Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction.

نویسندگان

  • Ka Chen
  • Qianyong Zhang
  • Jian Wang
  • Fengjin Liu
  • Mantian Mi
  • Hongxia Xu
  • Fang Chen
  • Kaihong Zeng
چکیده

Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is the major cause of progressive vision loss in numerous retinal diseases, including glaucoma and diabetic retinopathy. Taurine is a naturally occurring free amino acid that has been shown to have neurotrophic and neuroprotective properties in the retina. We investigated the specific potential for taurine to be protective for immortalized rat retinal ganglion cells (RGC-5) exposed to hypoxia (5% O(2)). Pretreatment of RGC-5 cells with 0.1 mM taurine significantly reduced the extent of apoptosis detected by DAPI staining, MTT, and Annexin V-FITC/PI assays. To further study the mechanism underlying the beneficial effect of taurine, interactions between taurine and the process of mitochondria-mediated apoptosis were examined. Taurine treatment of RGC-5 cells suppressed the induction of the mitochondrial permeability transition (mPT) by reducing intracellular calcium levels and inhibiting the opening of mitochondrial permeability transition pores (mPTPs). Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in taurine-treated cultures. These results demonstrate the potential for taurine to protect RGCs against hypoxic damage in vivo by preventing mitochondrial dysfunction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Effects of Taurine, Sestrin 2 and Phyllanthin on coronary artery diseases

Heart failure is a growing epidemic in the worldwide. Atherosclerosis is a major mechanism of cardiovascular disease including myocardial infarction and peripheral arterial disease. Moreover, it causes many diseases and deaths around the world. Atherosclerosis, like coronary artery disease (CAD), is associated with inflammation and oxidative stress. The current article has been collected the s...

متن کامل

Quercetin Declines Apoptosis, Ameliorates Mitochondrial Function and Improves Retinal Ganglion Cell Survival and Function in In Vivo Model of Glaucoma in Rat and Retinal Ganglion Cell Culture In Vitro

Glaucoma is a progressive neuropathy characterized by the loss of retinal ganglion cells (RGCs). Strategies that delay or halt RGC loss have been recognized as potentially beneficial for rescuing vision in glaucoma patients. Quercetin (Qcn) is a natural and important dietary flavonoid compound, widely distributed in fruits and vegetables. Mounting evidence suggests that Qcn has numerous neuropr...

متن کامل

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

Ginsenoside Rb1 protects rat retinal ganglion cells against hypoxia and oxidative stress.

The current study was designed to investigate the effect of ginsenoside Rb1 (Rb1) on apoptosis induced by hypoxia and oxidative stress in a retinal ganglion cell line (RGC-5). The underlying mechanism was also investigated. RGC-5 cells were pretreated with 10 µmol/l Rb1 for 24 h and exposed to 400 µmol/l cobalt chloride (CoCl2) for 48 h or 600 µmol/l H2O2 for 24 h. The percentage of cells activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1279  شماره 

صفحات  -

تاریخ انتشار 2009